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WHEN DO ENVY-FREE ALLOCATIONS EXIST?∗

PASIN MANURANGSI† AND WARUT SUKSOMPONG‡

Abstract. We consider a fair division setting in which m indivisible items are to be allocated
among n agents, where the agents have additive utilities and the agents’ utilities for individual
items are independently sampled from a distribution. Previous work has shown that an envy-free
allocation is likely to exist when m = Ω(n logn) but not when m = n + o(n), and left open the
question of determining where the phase transition from non-existence to existence occurs. We show
that, surprisingly, there is in fact no universal point of transition—instead, the transition is governed
by the divisibility relation between m and n. On the one hand, if m is divisible by n, an envy-free
allocation exists with high probability as long as m ≥ 2n. On the other hand, if m is not “almost”
divisible by n, an envy-free allocation is unlikely to exist even when m = Θ(n logn/ log logn).
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1. Introduction. Resource allocation is a fundamental task that occurs in a
great number of everyday situations, from allocating school supplies to children and
course slots in universities to students to allocating machine processing time to users
and kidneys to kidney transplant patients. One of the principal concerns when allo-
cating resources to interested agents is fairness: We want all agents to feel that they
receive a fair share of the resources. There is a rich and beautiful theory of fair divi-
sion that goes back several decades and has been studied in mathematics, economics,
and more recently computer science [5, 16, 17, 25].

In order to reason about fairness, we must define when an allocation is considered
to be “fair.” One of the most prominent fairness notions is envy-freeness, which
means that every agent likes her allocated portion at least as much as that of any
other agent [11, 26]. While an envy-free allocation can always be obtained when we
allocate divisible goods such as land or machine processing time [21], this is not the
case when it comes to allocating indivisible goods like jewelry and artworks. Indeed,
if a single bracelet or painting is to be divided between two agents, then no matter
how the division is performed, the agent who does not receive the item will be left
envying the other agent.

Given that the existence of envy-free allocations cannot be guaranteed in general
for indivisible goods, an important question is therefore when such allocations exist.
Dickerson et al. [8] investigated this question under a simple model where the agents
have additive utilities and their utilities for individual items are drawn at random
from probability distributions. If the number of items, m, is less than the number
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1506 PASIN MANURANGSI AND WARUT SUKSOMPONG

of agents, n, no envy-free allocation exists since any allocation necessarily leaves
some agent empty-handed and envious. Dickerson et al. showed that even when the
number of items slightly exceeds the number of agents—m = n + o(n)—an envy-
free allocation is still unlikely to exist. However, as soon as the number of items
is larger than the number of agents by a logarithmic factor—m = Ω(n log n)—an
envy-free allocation exists with high probability and can furthermore be obtained by
simply giving each item to the agent with the highest utility for it. Dickerson et al.
also found the phase transition from nonexistence to existence to be quite sharp in
computer experiments and left open the question of determining where this transition
occurs. Is the logarithmic factor in the upper bound necessary, or do we already have
existence when, say, m = 1.001n?

In this paper, we show that, surprisingly, there is in fact no universal point of
transition between nonexistence and existence. Instead, the transition is governed
by the divisibility relation between m and n. On the one hand, if m is divisible
by n, we show that an envy-free allocation exists with high probability as long as
m ≥ 2n (Theorem 3.1). Our result improves upon the aforementioned m = Ω(n log n)
upper bound and moreover completely closes the gap for the case of divisibility since
Dickerson et al.’s lower bound already implies that the same result does not hold when
m = n.1 On the other hand, if m is not “almost” divisible by n, in the sense that the
remainder of the division is between nε and n−nε for some constant ε ∈ (0, 1), we show
that an envy-free allocation is unlikely to exist as long as m = O(n log n/ log log n)
(Theorem 4.1). This comes to within a Θ(log log n) factor of matching their upper
bound. Both our existence and nonexistence results rely on several new key ideas. In
particular, for the existence result we need a completely different algorithm since the
welfare-maximizing algorithm used to achieve existence for m = Ω(n log n) cannot
yield any improvement of this bound (Proposition 3.2).

1.1. Related work. Besides the work of Dickerson et al. [8] that we mentioned,
several other works have investigated the asymptotic existence and nonexistence of
fair allocations for various fairness notions. Suksompong [23] considered proportional
allocations—allocations in which every agent receives at least 1/n of her value for the
whole set of items—and showed that such allocations exist with high probability if m
is a multiple of n or m = ω(n). Kurokawa, Procaccia, and Wang [12] showed that an
allocation that satisfies the maximin share criterion is likely to exist as long as either
m or n goes to infinity.2 As in our work, both Kurokawa, Procaccia, and Wang [12]
and Suksompong [23] used techniques from the theory of matchings in random graphs
to establish the existence of fair allocations. Amanatidis et al. [2] also addressed the
existence of allocations satisfying the maximin share criterion. Finally, Manurangsi
and Suksompong [15] considered the setting where goods are allocated to groups of
agents and generalized Dickerson et al.’s [8] results on envy-freeness to that setting.

Since envy-free allocations cannot always be obtained even in the simplest setting
with two agents and one item, a recent line of work has focused on relaxations of
envy-freeness with the goal of recovering the guaranteed existence. These relaxations
include envy-freeness up to one item—any envy that an agent has toward another
agent can be eliminated by removing some item from the latter agent’s bundle—and

1We do note, however, that Dickerson et al.’s upper bound holds under a weaker assumption
on the distributions. For example, it does not assume that the utilities are drawn from the same
distribution for all agents and items.

2We refer to their paper for the definition but remark here that both proportionality and the
maximin share criterion are weaker than envy-freeness when utilities are additive.
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WHEN DO ENVY-FREE ALLOCATIONS EXIST? 1507

envy-freeness up to any item—any such envy can be eliminated by removing any item
from the latter agent’s bundle. It has been shown that these relaxations do provide
existence guarantees in a number of settings [1, 3, 4, 6, 7, 13, 14, 18].

2. Preliminaries. A set M = [m] of indivisible items is to be allocated to a set
N = [n] of agents, where we use [k] to denote the set {1, 2, . . . , k}. Each agent i has
a nonnegative utility ui(j) for item j. We assume that the utility ui(j) lies in [0, 1];
this does not introduce a loss of generality since we can scale down all utilities by
their maximum. The utilities of the agents are additive, i.e., ui(M

′) =
∑
j∈M ′ ui(j)

for any M ′ ⊆M . The additivity assumption is made in several works on fair division
and, in particular, in all of the works on the asymptotic existence of fair allocations
mentioned in section 1.1.

A bundle refers to a subset of M . An allocation is a partition of M into n bundles
(M1,M2, . . . ,Mn), where bundle Mi is allocated to agent i. An allocation is said to be
envy-free for agent i if ui(Mi) ≥ ui(Mj) for any j ∈ N and envy-free if it is envy-free
for every agent i ∈ N .

For agents i ∈ N and items j ∈ M , the utilities ui(j) are drawn independently
from a distribution U . A distribution is said to be nonatomic if it does not put
positive probability on any single point. The condition that we will impose on U
for our results is that it “behaves like a polynomial close to 1” in the sense that the
function g(α) = Pru∼U [u ≥ 1−α] is bounded above and below by a polynomial. This
is formalized in the following definition.

Definition 2.1. Let θ, q be any positive real numbers. A probability distribution
U on [0, 1] is said to be (θ, q)-polynomially bounded below (resp., above) at 1 if for
every α ∈ (0, 1], we have Pru∼U [u > 1−α] ≥ θ ·αq (resp., Pru∼U [u > 1−α] ≤ θ ·αq).

A probability distribution U is said to be polynomially bounded at 1 if there exist
constants θ, θ, q > 0 such that U is (θ, q)-polynomially bounded below at 1 and (θ, q)-
polynomially bounded above at 1.

We assume in section 3 that U is polynomially bounded at 1 and in section 4 that
U is polynomially bounded below at 1. To illustrate the generality of this definition,
consider any nonatomic continuous distribution U whose probability density function
fU is bounded below (resp., above) around 1, i.e.; there exist ε, β > 0 such that
fU (x) ≥ β (resp., fU (x) ≤ β) for all x ≥ 1− ε. One can check that U is polynomially
bounded below (resp., above) at 1 with parameters θ = ε · β (resp., θ = max{β, 1/ε})
and q = 1. This immediately implies that the uniform distribution on [0, 1] and a
normal distribution (with any mean and variance) truncated at 0 and 1 are polynomi-
ally bounded at 1, as both have probability density functions that are bounded both
above and below in [0, 1].

For completeness, let us also provide examples of distributions that are not poly-
nomially bounded at 1. The first example is when Pru∼U [u = 1] > 0. In this case,
clearly the distribution is not polynomially bounded above at 1. Another example is
if we take any U such that Pru∼U [u ≥ 1− 1/2i] = 1/2i

2

for all integer i ≥ 0. It is not
hard to see that this distribution is not polynomially bounded below at 1. Indeed, for

any fixed q > 0, we have limi→∞
(1/2i

2
)

(1/2i)q = 0, which means that there is no θ > 0 such

that Pru∼U [u ≥ 1− α] ≥ θ · αq for all α ∈ (0, 1].
Finally, a statement is said to hold with high probability if the probability that it

holds approaches 1 as n→∞.

3. Existence. In this section, we investigate the existence front of envy-free
allocations. We first show that the welfare-maximizing algorithm of Dickerson et
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1508 PASIN MANURANGSI AND WARUT SUKSOMPONG

al. [8] cannot yield any improvement of the m = Ω(n log n) bound. We then prove
the main existence result of this paper, which holds for any m ≥ 2n that is a multiple
of n.

Theorem 3.1. Let r ≥ 2 be an integer, and suppose that m = rn. Assume
that U is polynomially bounded at 1. With high probability, there exists an envy-free
allocation. Moreover, there is a polynomial-time algorithm that computes such an
allocation.

A bonus of our algorithm is that it returns a balanced allocation, i.e., one that
gives every agent the same number of items. This may be desirable in situations
where capacity constraints are involved, for example, if we divide artworks between
museums or players between sports teams.

3.1. The limit of the welfare-maximizing algorithm. Recall the main ex-
istence result of Dickerson et al. [8]: When m = Ω(n log n), the welfare-maximizing
algorithm, which allocates each item to the agent who values it most, is likely to
produce an envy-free allocation. We observe that this bound is tight up to a constant
factor—for m = n log n − ω(n) items, the welfare-maximizing allocation is unlikely
to be envy-free. An implication of this observation is that the welfare-maximizing
algorithm fails to be envy-free in the case where m = rn for any positive integer
r ≤ log n − ω(1). By contrast, the algorithm that we will present finds an envy-free
allocation with high probability for any integer r ≥ 2.

Proposition 3.2. Let m = n log n − ω(n), and suppose that U is nonatomic.
Then, with high probability, the welfare-maximizing allocation is not envy-free.

Proof. The proposition follows from a classical result on the coupon collector’s
problem. In this problem, there is an urn of n coupons. Each turn, a coupon is drawn
uniformly at random from the urn and immediately returned to the urn. Erdős and
Rényi [9] proved that with high probability, after n log n − ω(n) turns, some coupon
has not been drawn.

The connection between the coupon collector’s problem and our setting is fairly
simple. First, the nonatomic assumption on the distribution implies that, almost
surely, all items yield positive utility to every agent and that every item has only
one agent who values it most. As a result, the welfare-maximizing allocation assigns
each item to each agent with probability 1/n. If we view each agent as a coupon
in the coupon collector’s problem, Erdős and Rényi’s result implies that with high
probability, some agent does not receive any item in this allocation. From the positive
utility observation, the allocation cannot be envy-free.

We now briefly mention the approaches used by other prior work on asymptotic
fair division. Kurokawa, Procaccia, and Wang [12] followed a similar approach as
Dickerson et al. [8] in establishing the existence of allocations satisfying the maximin
share criterion. Suksompong [23] used a threshold matching algorithm similar to
our Algorithm 3.1 to show that proportional allocations exist with high probability.
Finally, Amanatidis et al. [2] proved that the allocation produced by a “round-robin”
algorithm is likely to be proportional as long as r ≥ 2. Note that the round-robin
approach does not work for envy-freeness. Indeed, for any constant r, the last agent
to pick will get expected value at most r − 1/2 since the final item is worth at most
1/2 in expectation to her. However, with high probability, some agent will receive a
bundle worth more than r − 1/2 to the last agent.
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WHEN DO ENVY-FREE ALLOCATIONS EXIST? 1509

Algorithm 3.1 Simplified Algorithm for r ≥ 3.

1: procedure ThresholdMatchingτ (N,M, {ui}i∈[n])
2: for i = 1, 2, . . . , n do
3: M≥τ (i)← {j ∈M | ui(j) ≥ τ}
4: end for
5: Let G≥τ = (N,M,E≥τ ) denote the graph where (i, j) ∈ E≥τ iff j ∈M≥τ (i).
6: if G≥τ contains a perfect r-matching then
7: return any perfect r-matching of G≥τ
8: else
9: return NULL

10: end if
11: end procedure

3.2. Warm-up: A simplified algorithm for r ≥ 3. The remainder of sec-
tion 3 is devoted to proving Theorem 3.1; we assume throughout that m = rn for
some integer r ≥ 2. As Dickerson et al. [8] already showed that the theorem holds for
r = Ω(log n), it suffices for us to establish the statement for r = O(log n). Neverthe-

less, we will prove the statement for r ≤ en0.1

, which is much stronger; while this is not
necessary, we do so to demonstrate that our algorithm and its analysis are robust and
apply even when the number of items is significantly larger than the number of agents.

Before we proceed to the actual algorithm, let us provide the intuition behind the
algorithm by describing a simpler algorithm that works in all cases except when r = 2.
For the sake of exposition, we shall restrict ourselves to the case where the distribution
U is the uniform distribution on [0, 1] and r > 2 is a constant (i.e., does not grow with
n). We shall also sometimes be informal here; all proofs will be formalized in the rest
of section 3.

The simplified algorithm tries to find an allocation that satisfies the following two
properties: (i) Each agent receives exactly r items, and (ii) each agent has utility
at least τ := 1 − 2 log n/n for every item that she receives. If at least one such
allocation exists, the algorithm outputs any of them. Otherwise, it outputs NULL.
Note that determining whether such an allocation exists and finding one if it exists
can be done in polynomial time by reducing to matching: We create a bipartite graph
(N × [r],M,E), where ((i, `), j) ∈ E if and only if ui(j) ≥ τ . A desired allocation
corresponds to a perfect matching in this graph.3

For the sake of convenience, we introduce the notion of r-matching, which allows
us to focus on the graph with vertex set N instead of N × [r]. In an r-matching, each
left vertex can be matched to as many as r right vertices, whereas each right vertex
is still allowed to be matched to at most one left vertex.

Definition 3.3. An r-matching of a bipartite graph G is a subgraph of G such
that every left vertex has degree at most r and every right vertex has degree at most 1.
An r-matching is said to be perfect if every left vertex has degree exactly r and every
right vertex has degree exactly 1.

As with normal matchings, a perfect r-matching can be computed in polynomial
time by creating r copies of each left vertex and finding a perfect matching. With
this definition, our simplified algorithm can be described as Algorithm 3.1.

3We write (U, V,E) to denote a bipartite graph with the set of vertices U and V in the partition,
which we refer to as the set of left vertices and right vertices, respectively, and the set of edges E.
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We now sketch the proof of correctness of Algorithm 3.1, which consists of two
parts. First, we argue that with high probability, the algorithm returns a perfect
r-matching in G≥τ (i.e., does not output NULL). Second, we show that the output
allocation is envy-free with high probability.

3.2.1. Existence of a perfect r-matching in G≥τ . For the first part, we
evoke a classical result regarding the existence of a perfect matching in bipartite
random graphs. Recall that for any positive integers a, b and any p ∈ [0, 1], a bipartite
graph sampled from the Erdős–Rényi random bipartite graph distribution G(a, b, p)
consists of left and right vertex sets A and B of size a and b, respectively, and for
any pair of vertices a ∈ A and b ∈ B, the edge (a, b) occurs with probability p
independently of other pairs of vertices.

Proposition 3.4 ([10]). Let G be a bipartite graph sampled from the Erdős–
Rényi random bipartite graph distribution G(n, n, p), where p = (log n + ω(1))/n.
Then, with high probability, G contains a perfect matching.

To show that a perfect r-matching is likely to exist in G≥τ , we arbitrarily partition
the item set M into r parts M (1), . . . ,M (r), each of size n. We also create a bipartite
graph H(a) for a = 1, 2, . . . , r, where the left vertex set is N , the right vertex set is
M (a), and each (i, j) is an edge if and only if ui(j) ≥ τ . Now, since τ = 1− 2 log n/n,
for each a the graphH(a) is distributed according to the Erdős–Rényi random bipartite
graph distribution G(n, n, 2 log n/n). As a result, Proposition 3.4 implies that H(a)

contains a perfect matching with high probability. By taking the union of the perfect
matchings in H(1), . . . ,H(r), we conclude that G≥τ contains a perfect r-matching with
high probability. This completes the first part of the proof sketch.

3.2.2. Envy-freeness of output allocation. Next, we argue that with high
probability, any allocation output by Algorithm 3.1 is envy-free. Consider any such
allocation. Since every agent receives r items, each of which yields utility at least τ
to her, her total utility is at least r · τ = r − 2r log n/n. It therefore suffices to show
that with high probability, for every i′ 6= i, the utility of agent i′ for agent i’s bundle
Mi is at most r−2r log n/n. We will show that with high probability, for every i′ 6= i,
agent i′ values at most r − 1 items in Mi more than 1− 2r log n/n. This is sufficient
because these r − 1 items can each contribute utility at most 1 to agent i′, whereas
the remaining item contributes utility at most 1 − 2r log n/n to her. It follows that
the utility of agent i′ for Mi does not exceed (r−1)+(1−2r log n/n) = r−2r log n/n.

Fix two distinct i, i′ ∈ [n]. Let Ei,i′ denote the “bad” event that there exist r
items j1, . . . , jr, for which ui(jk) ≥ τ and ui′(jk) ≥ 1− 2r log n/n for k = 1, 2, . . . , r.
Consider any item j ∈ M . Since we assume that ui(j) and ui′(j) are drawn inde-
pendently from the uniform distribution on [0, 1], the probability that item j satisfies

the two inequalities above for i and i′ is at most 2 logn
n · 2r lognn = 4r log2 n

n2 . Using the
union bound over all subsets of r items, we have

Pr[Ei,i′ ] ≤
(
m

r

)
·
(

4r log2 n

n2

)r
≤
(

4r2 log2 n

n

)r
= o(n−2),

where we use the inequality
(
m
r

)
≤ mr and the assumption that r ≥ 3 is constant.

Applying the union bound again over all i, i′, the probability that at least one bad
event occurs is o(1). This concludes our proof sketch for the simplified algorithm.
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3.3. The algorithm. Having described the simplified algorithm, we now pro-
ceed to the actual algorithm. Before we do so, let us note that Algorithm 3.1 does
not work for r = 2. This is because when r = 2, there is a constant probability that
some pair of agents have the same two most valued items. In this case, Algorithm 3.1
could output an allocation that assigns both items to one of the two agents, which
would mean that this agent is envied by the other agent.

To make Algorithm 3.1 work for r = 2, recall that the algorithm could fail if it is
possible to find r items in the candidate item set of agent i (i.e., the set of items for
which agent i has utility at least τ) that another agent i′ values more than r ·τ in total.
The modification to the algorithm is simple: remove any such problematic items from
the candidate set of i before we try to find a perfect r-matching in the graph.

There are multiple ways to implement this removal step. The way we use, which
we feel is quite natural, is to continue removing from the candidate set of agent i an
item which agent i′ values the most until the r items in the candidate set of i that are
most highly valued by i′ are not valued more than r · τ in total. The pseudocode of
the algorithm is presented below as Algorithm 3.2; here we use sum-topr(S) to denote
the sum of the r largest elements of S for any multiset of real numbers S (or the sum
of all elements if S contains less than r elements). The set in line 5 of the algorithm
is considered as a multiset. The appropriate value of τ depends on the distribution U
and will be specified later.

Algorithm 3.2 Algorithm for any r ≥ 2.

1: procedure ThresholdMatchingWithRemovalτ (N,M, {ui}i∈[n])
2: for i = 1, 2, . . . , n do
3: M∗≥τ (i)← {j ∈M | ui(j) ≥ τ}
4: for i′ ∈ [n] \ {i} do
5: while sum-topr

(
{ui′(j) | j ∈M∗≥τ (i)}

)
> r · τ do

6: M∗≥τ (i)←M∗≥τ (i) \ arg maxj∈M∗≥τ (i) ui
′(j)

7: end while
8: end for
9: end for

10: Let G∗≥τ = (N,M,E∗≥τ ) denote the graph where (i, j) ∈ E∗≥τ iff j ∈M∗≥τ (i).
11: if G∗≥τ contains a perfect r-matching then
12: return any perfect r-matching of G∗≥τ
13: else
14: return NULL
15: end if
16: end procedure

The above modification ensures that if Algorithm 3.2 returns an allocation, it
must be envy-free. Indeed, each agent i has utility at least τ for every item assigned
to her in the r-matching, so her total utility is at least r · τ . On the other hand, by
construction of the graph G∗≥τ , each agent i′ values the r items assigned to agent i at
most r · τ . Thus, the output allocation must be envy-free.

In order to establish Theorem 3.1, it therefore remains to show that with an
appropriate choice of τ , a perfect r-matching in G∗≥τ exists with high probability.
Recall our assumption that the distribution U from which the utilities are drawn is
polynomially bounded at 1. Let θ, θ, q > 0 be the associated parameters. It suffices
to prove the following lemma.
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1512 PASIN MANURANGSI AND WARUT SUKSOMPONG

Lemma 3.5. Set τ := 1 − ( 64 logm
θn )1/q in Algorithm 3.2, and let 2 ≤ r ≤ en

0.1

.

Then, with high probability, the graph G∗≥τ contains a perfect r-matching.

Note that the condition r ≤ en0.1

implies that τ > 0 for large enough n.
The proof of Lemma 3.5 consists of two parts. First, in section 3.4, we show

that only a few edges are removed in line 6 of Algorithm 3.2; in particular, we show
that with high probability, at most two edges adjacent to any particular vertex are
removed. Then, in section 3.5, we show that the existence of a perfect r-matching is
locally resilient (see, e.g., [22]) in the following sense: Even if we remove a low-degree
subgraph from a random graph sampled from the Erdős–Rényi random bipartite graph
distribution with sufficiently large probability, then the remaining graph still contains
a perfect r-matching with high probability. Putting these two parts together yields
Lemma 3.5; this is done in section 3.6.

Before we proceed to proving Lemma 3.5, we perform some preliminary calcu-
lations. Picking α = 1 − τ in Definition 2.1, we have Pru∼U [u > τ ] ≥ 64 logm

n . On
the other hand, writing τ ′ := 3τ − 2 and letting α = 1 − τ ′ in Definition 2.1 yields

Pru∼U [u > τ ′] ≤ θ(3(1− τ))q = C logm
n for the constant C := 3q · 64θθ .

3.4. Bounding the number of edges removed. Let E≥τ and E∗≥τ denote
the set of edges as defined in Algorithms 3.1 and 3.2, respectively. The main result of
this subsection is the following lemma.

Lemma 3.6. With high probability, the graph (N,M,E≥τ \ E∗≥τ ) has maximum
degree at most 2.

In addition to the graphs G≥τ and G∗≥τ (as defined in Algorithms 3.1 and 3.2,
respectively), we consider the graph G>τ ′ = (N,M,E>τ ′) which can be defined analo-
gously. That is, the neighbor set of i ∈ N in G>τ ′ is M>τ ′(i) := {j ∈M | ui(j) > τ ′}.

The next proposition states that, for any edge (i, j) that is removed, in line 6 of Al-
gorithm 3.2, the edge (i, j) must be part of a complete bipartite subgraph K2,b2r/3c+1

of the graph G>τ ′ .
4 We note that this is similar to the argument for the simplified

algorithm in section 3.2, which, in the new language, states that any edge (i, j) that
would be removed in line 6 of Algorithm 3.2 must be part of a complete bipartite
subgraph K2,r of the graph G>τ ′ , where the threshold τ ′ there is chosen (differently)
to be 1− 2r log n/n.

Proposition 3.7. If (i, j) ∈ E≥τ \E∗≥τ , then there exists i′ such that |M>τ ′(i)∩
M>τ ′(i

′)| > 2r/3 and j ∈M>τ ′(i) ∩M>τ ′(i
′).

Proof. First, let us argue that j ∈ M>τ ′(i) ∩ M>τ ′(i
′). The assumption that

(i, j) ∈ E≥τ immediately implies that j ∈M>τ ′(i) since τ ′ = 3τ−2 < τ . Let i′ ∈ N be
the vertex in line 5 of Algorithm 3.2 that causes the removal of the edge (i, j). At this
line, we have sum-topr({ui′(j′) | j′ ∈M∗≥τ (i)}) > r·τ and j ∈ arg maxj′∈M∗≥τ (i) ui

′(j′).

Hence, ui′(j) ≥ (r · τ)/r = τ > τ ′, and therefore j ∈ M>τ ′(i
′). We have thus shown

that j ∈M>τ ′(i) ∩M>τ ′(i
′).

Next, let y = min{r, |M>τ ′(i) ∩M>τ ′(i
′)|}. The condition

sum-topr
(
{ui′(j′) | j′ ∈M∗≥τ (i)}

)
> r · τ

4The notation Ka,b refers to a complete bipartite graph with left and right vertex sets of size a
and b, respectively.
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WHEN DO ENVY-FREE ALLOCATIONS EXIST? 1513

at the time when the edge (i, j) is removed implies that

r · τ < sum-topr
(
{ui′(j′) | j′ ∈M∗≥τ (i)}

)
≤ sum-topr ({ui′(j′) | j′ ∈M>τ ′(i)})

≤ y · 1 + (r − y) · τ ′

= y + (r − y)(3τ − 2)

= (3− 3τ)y + (3τ − 2)r,

which in turn implies that y > 2r/3. In particular, this means that |M>τ ′(i) ∩
M>τ ′(i

′)| > 2r/3, as claimed.

We now use Proposition 3.7 to prove Lemma 3.6. We consider two cases: r ≥ 3
and r = 2.

3.4.1. The case r ≥ 3. The proof for the case r ≥ 3 is similar to that of the
simplified algorithm (section 3.2). In particular, we show that with high probability,
no edge is removed in Algorithm 3.2. This also means that Algorithms 3.1 and 3.2
are equivalent with high probability.

Proposition 3.8. Let 3 ≤ r ≤ en0.1

. Then, with high probability, E≥τ = E∗≥τ .

Proof. For convenience, let p>τ ′ := Pru∼U [u > τ ′]. Note that p>τ ′ ≤ C logm
n ≤

C0/n
0.9 for C0 := 2C, where the last inequality holds for sufficiently large n. We will

argue that with high probability, there are no distinct i, i′ ∈ N such that |M>τ ′(i) ∩
M>τ ′(i

′)| > 2r/3. Together with Proposition 3.7, this implies that no edge is removed,
and therefore E≥τ = E∗≥τ .

To show this, we use the standard first moment method. Fix distinct i, i′ ∈ N and
a subset S ⊆M of size x := b2r/3c+ 1. The probability that S ⊆M>τ ′(i)∩M>τ ′(i

′)
is exactly (p>τ ′)

2x. Hence, by taking the union bound over all choices of i, i′ and S,
the probability that |M>τ ′(i) ∩M>τ ′(i

′)| > 2r/3 for some i, i′ is at most

n2
(
m

x

)
(p>τ ′)

2x ≤ n2
(em
x

)x
(p>τ ′)

2x

(since x ≥ 3) ≤ (n(p>τ ′)
1.2)2

(
em(p>τ ′)

1.2

x

)x
(since x > 2r/3) < (n(p>τ ′)

1.2)2
(
1.5en(p>τ ′)

1.2
)x(

since p>τ ′ ≤
C0

n0.9

)
≤ (C1.2

0 n−0.08)2(1.5eC1.2
0 n−0.08)x

= o(1),

which concludes the proof.

3.4.2. The case r = 2. As argued earlier, in the case r = 2, some edges must be
removed in order to guarantee that the output allocation is envy-free. The following
proposition ensures that with high probability, for any vertex, at most two edges
adjacent to it are removed in Algorithm 3.2.

Proposition 3.9. Let r = 2. Then, with high probability, the graph (N,M,E≥τ \
E∗≥τ ) has maximum degree at most 2.
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1514 PASIN MANURANGSI AND WARUT SUKSOMPONG

u u u

u u

Fig. 1. All possible unions of two distinct complete bipartite graphs K2,2 which share at least
one vertex u, up to isomorphism. The shaded vertices constitute one copy of K2,2, whereas the
thickened vertices constitute another.

Proof. Observe that, for r = 2, Proposition 3.7 can be restated as follows: If
(i, j) ∈ E≥τ \ E∗≥τ , then there exist i′ ∈ N and j′ ∈ M such that i, i′, j, j′ form a
complete bipartite graph K2,2 in the graph G>τ ′ .

Now suppose that some vertex u ∈ N ∪ M appears in at least three edges in
E≥τ \ E∗≥τ . The previous paragraph implies that each such edge must be contained
in a copy of K2,2 in the graph G>τ ′ . Since the three edges from u are distinct,
not all three of these copies can be identical. As a result, u must be contained in
two different copies of K2,2, which means that at least one of the graphs shown in
Figure 1 must appear as a subgraph of G>τ ′ . Notice that by the union bound, for
any graph H = (VH , EH), the probability that it appears as a subgraph of G>τ ′

is at most (n + m)|VH |(p>τ ′)
|EH | ≤ (3n)|VH |(C logm

n )|EH |. However, all graphs H in
Figure 1 satisfy |EH | ≥ |VH | + 1. Hence, the probability that each of them appears

as a subgraph is at most (C logn)O(1)

n = o(1). Using the union bound, the probability
that at least one of these graphs appears as a subgraph of G>τ ′ is also o(1). This
implies that the probability that at least one of the vertices is adjacent to more than
two edges in E≥τ \ E∗≥τ is o(1), as desired.

Finally, we note that Propositions 3.8 and 3.9 together imply Lemma 3.6.

3.5. Local resilience of perfect r-matching. In this subsection, we show that
in a random bipartite graph sampled from the Erdős–Rényi random bipartite graph
distribution G(n, rn, p) with sufficiently large p, not only does a perfect r-matching
exist, but the existence is also robust in the following sense: Even if we remove edges
from the graph, as long as not too many edges adjacent to each vertex are removed,
a perfect r-matching still exists. Such “robustness” is known in the literature as
local resilience. In particular, the local resilience of perfect matchings was shown by
Sudakov and Vu [22]. We will extend their proof to the case of perfect r-matchings.
However, we note that our bound will be slightly weaker than theirs since our main
goal is to derive a bound that is sufficient for the algorithm to work and not to find
the best possible parameters.

A typical method for establishing the existence of a perfect matching, which was
used both by Sudakov and Vu [22] and by Erdős and Rényi [10], is to show that the
graph satisfies the condition of Hall’s marriage theorem. For any graph G and any
set S of vertices in G, denote by NG(S) the set of vertices adjacent to at least one
vertex in S.

Theorem 3.10 (Hall’s marriage theorem). Let G = (A,B,E) be any bipartite
graph such that |A| = |B|. If |NG(S)| ≥ |S| for all subsets S ⊆ A, then G has a
perfect matching.
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WHEN DO ENVY-FREE ALLOCATIONS EXIST? 1515

Recall that G = (A,B,E) has a perfect r-matching if and only if the graph
(A× [r], B,E′), where ((a, `), b) ∈ E′ if and only if (a, b) ∈ E, has a perfect matching.
Hence, Hall’s marriage theorem immediately extends to r-matchings.

Proposition 3.11. Let G = (A,B,E) be any bipartite graph such that |B| =
r|A|. If |NG(S)| ≥ r|S| for all subsets S ⊆ A, then G has a perfect r-matching.

One way to show that the condition of Hall’s marriage theorem is satisfied is to
show that there is at least one edge between any sets S ⊆ A and T ⊆ B of appropriate
sizes. To ensure that the existence of a perfect r-matching is locally resilient, we need
to show not only that one edge exists but also that many edges exist. This can be done
via standard concentration bounds. For any graph G and any sets S, T of vertices in
G, denote by EG(S, T ) the set of edges connecting a vertex in S to a vertex in T .

Lemma 3.12. Let G = (A,B,E) be a graph sampled from the Erdős–Rényi ran-
dom bipartite graph distribution G(n,m, p) with p ≥ 64 logm

n . Then, with high probabil-
ity, the following holds for all subsets S ⊆ A and T ⊆ B such that |T | = m− r|S|+ 1:

(3.1) |EG(S, T )| > (16 logm) ·min{|S|, |T |}.

To prove Lemma 3.12, we will use the Chernoff bound, which is stated for conve-
nience below.

Lemma 3.13 (Chernoff bound). Let X1, X2, . . . , Xr be i.i.d. random variables
that take on values in the interval [0, 1], and let X := X1 + · · ·+Xr. For every δ ≥ 0,
we have

Pr[X ≤ (1− δ)E[X]] ≤ exp

(
−δ2 E[X]

2

)
.

Proof of Lemma 3.12. If S = ∅, we must have |T | = m + 1, which is impossible
since |B| = m. Fix a subset ∅ 6= S ⊆ A and T ⊆ B such that |T | = m− rs+ 1, where
s := |S|. We will compute the probability that S, T violate (3.1).

Observe that |EG(S, T )| is simply a sum of |S||T | i.i.d. Bernoulli random variables
that take on the value 1 with probability p. Hence, by Lemma 3.13, we have

(3.2) Pr

[
|EG(S, T )| ≤ p|S||T |

2

]
≤ exp

(
−p|S||T |

8

)
.

Now observe that

p|S||T | = p ·min{|S|, |T |} ·max{|S|, |T |}

≥ p ·min{|S|, |T |} · r|S|+ |T |
r + 1

= p ·min{|S|, |T |} · m+ 1

r + 1

≥ p ·min{|S|, |T |} · n/2
≥ (32 logm) ·min{|S|, |T |}.(3.3)

Thus, by combining (3.2) and (3.3), we get

Pr [|EG(S, T )| ≤ (16 logm) ·min{|S|, |T |}] ≤ exp

(
−p|S||T |

8

)
.
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1516 PASIN MANURANGSI AND WARUT SUKSOMPONG

By the union bound, the probability that there exist S, T that violate (3.1) is at
most

n∑
s=1

exp

(
−ps(m− rs+ 1)

8

)(
n

s

)(
m

m− rs+ 1

)

≤
n∑
s=1

exp

(
−ps(m− rs+ 1)

8

)
nmin{s,n−s} ·mmin{rs−1,m−rs+1}

=

n∑
s=1

exp

(
−ps(m− rs+ 1)

8
+ log n ·min{s, n− s}

+ logm ·min{rs− 1,m− rs+ 1}
)

≤
n∑
s=1

exp

(
−ps(m− rs+ 1)

8
+ 2 logm ·min{rs,m− rs+ 1}

)

=

n∑
s=1

exp

((
−(p/r) max{rs,m− rs+ 1}

8
+ 2 logm

)
·min{rs,m− rs+ 1}

)

≤
n∑
s=1

exp

((
−(p/r) · (m/2)

8
+ 2 logm

)
·min{rs,m− rs+ 1}

)

≤
n∑
s=1

exp

(
(−4 logm+ 2 logm) ·min{rs,m− rs+ 1}

)

≤
n∑
s=1

exp (−2 logm)

≤ 1/n,

which concludes the proof.

With Lemma 3.12 ready, we now establish the local resilience of the existence of
perfect r-matchings in random graphs.

Lemma 3.14. Let G = (A,B,E) be a graph sampled from the Erdős–Rényi ran-
dom bipartite graph distribution G(n,m, p) with p ≥ 64 logm

n . Then, with high proba-
bility, for any subgraph H = (A,B,E′) of G with maximum degree at most 16 logm,
the graph G−H = (A,B,E \ E′) contains a perfect r-matching.

Proof. From Lemma 3.12, with high probability, (3.1) holds for all S ⊆ A, T ⊆ B
with |T | = m − r|S| + 1. We claim that this implies that G − H = (A,B,E \ E′)
contains a perfect r-matching. Suppose for the sake of contradiction that G−H does
not contain an r-perfect matching. Proposition 3.11 implies that there exists a set
S ⊆ A such that |NG−H(S)| ≤ r|S| − 1. Let T be any subset of B \NG−H(S) of size
m− r|S|+ 1. Since T ∩NG−H(S) = ∅, we have EG−H(S, T ) = ∅. However, by (3.1),
|EG(S, T )| > (16 logm) ·min{|S|, |T |}, and so |EH(S, T )| > (16 logm) ·min{|S|, |T |}
as well. This means that at least one vertex in S∪T (from the smaller set of the two)
has degree more than 16 logm in H, which is a contradiction.

3.6. Putting things together. With Lemmas 3.6 and 3.14 in hand, we can
(finally) prove Lemma 3.5.

Proof of Lemma 3.5. First, Lemma 3.6 ensures that with high probability, for
each vertex, at most two edges adjacent to it are removed from G≥τ in Algorithm 3.2,

D
ow

nl
oa

de
d 

08
/0

5/
22

 to
 1

03
.2

7.
9.

24
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WHEN DO ENVY-FREE ALLOCATIONS EXIST? 1517

where G≥τ is defined as in Algorithm 3.1. Recall also that G≥τ is distributed
according to the Erdős–Rényi random bipartite graph distribution G(n,m, p) with
p = Pru∼U [u ≥ τ ] ≥ 64 logm

n . It therefore follows from Lemma 3.14 that a perfect
r-matching exists in G∗≥τ with high probability.

4. Nonexistence. Our main nonexistence result states that envy-free alloca-
tions are unlikely to exist if m = O(n log n/ log log n) is not “close to” being a multiple
of n. This improves upon the m = n + o(n) lower bound of Dickerson et al. [8] and
comes to within a Θ(log log n) factor of matching their upper bound.

Theorem 4.1. For any real numbers θ > 0, ε ∈ (0, 1), and q ≥ 1, there exists
c > 0 depending only on θ, ε, q such that the following holds: For any positive integer
r ≤ c logn

log logn , if m ∈ [rn+nε, (r+ 1)n−nε] and U is (θ, q)-polynomially bounded below
at 1, then, with high probability, there is no envy-free allocation.

We remark that since we only require the distribution to be polynomially bounded
below, the assumption q ≥ 1 does not introduce a loss of generality—indeed, if a
distribution is (θ, q)-polynomially bounded below for some q < 1, then it is also (θ, 1)-
polynomially bounded below. Before we proceed to the full proof of Theorem 4.1,
we give a high-level overview. The proof is based on the first moment method; the
key is to show that for any fixed allocation, the probability (over the random utilities
drawn) that it is envy-free is � 1/nm. Since there are nm possible allocations, the
union bound implies that with high probability, no envy-free allocation exists.

To give an intuition for this bound, let us consider a simplified setting where
m = (r + 0.5)n and the distribution U is uniform on [0, 1]. Intuitively, the “more
balanced” the allocation is, the harder it is to bound the probability that the allocation
is envy-free. Following this intuition, let us consider the “most balanced” allocation
where 0.5n agents receive r + 1 items and the remaining agents receive r items. The
key observation is that, for the allocation to be envy-free for every agent in the latter
group, any such agent must have utility at most r for the r+ 1 items in the bundle of
any agent in the first group. For a fixed agent in the second group and a fixed agent
in the first group, this happens with probability at most 1− 1/(r + 1)r+1. Indeed, if
each of the r + 1 items yields utility at least r/(r + 1) to the agent, the requirement
is not satisfied. Now, since there are 0.25n2 such pairs of agents, the probability that

this fixed allocation is envy-free is at most (1 − 1
(r+1)r+1 )0.25n

2

= exp(Θ( −n2

(r+1)r+1 )).

Hence, as long as r � log n/ log log n, this term is at most, say, exp(−n1.9), which is
indeed much smaller than n−m.

The full proof proceeds along the lines of the argument above, but we need to be
more careful, as we must also deal with other “less balanced” allocations.

Proof of Theorem 4.1. Let c = 0.1εθ/q. We will show that, for any sufficiently
large n and any allocation φ : M → N ,

Pr[φ is envy-free] ≤ n−2m.(4.1)

Since there are nm different allocations, the union bound implies that the probability
that an envy-free allocation exists is at most n−m = o(1). Hence, it suffices for us to
show (4.1).

To prove (4.1), observe that for any fixed φ, the probability that φ is envy-free
for each agent is independent. That is,

(4.2) Pr[φ is envy-free] =
∏
i∈N

Pr[φ is envy-free for agent i].
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1518 PASIN MANURANGSI AND WARUT SUKSOMPONG

Let zi = |φ−1(i)| denote the number of items that agent i receives. Since agent
i values her items at most zi in total, if φ is envy-free for i, then i must value items
allocated to any other agent i′ at most zi. More precisely, this implies that

Pr[φ is envy-free for agent i] ≤ Pr

∀i′ ∈ N, ∑
j∈φ−1(i′)

ui(j) ≤ zi


=
∏
i′∈N

Pr

 ∑
j∈φ−1(i′)

ui(j) ≤ zi

 .(4.3)

Next, we use the assumption that U is (θ, q)-polynomially bounded below at 1 to
derive an upper bound for the probability that

∑
j∈φ−1(i′) ui(j) ≤ zi for i and i′ such

that zi ≤ r < zi′ . Note that zi and zi′ depend only on the allocation φ, which means
that the condition zi ≤ r < zi′ is deterministic.

Lemma 4.2. Let ρ := 4

√
1− (θ( 1

r+1 )q)r+1. For every i, i′ ∈ N such that zi ≤ r <
zi′ , we have

Pr

 ∑
j∈φ−1(i′)

ui(j) ≤ zi

 ≤ ρzi′/r.
Note that since U is (θ, q)-polynomially bounded below at 1, substituting α = 1

in Definition 2.1 implies that θ ≤ 1, and therefore (θ( 1
r+1 )q)r+1 ≤ 1.

Proof. To prove this bound, let γ be the probability that the sum of r + 1 i.i.d.
random variables drawn from U exceeds r. This probability is at least the probability
that all of the r+ 1 random variables are of value more than r/(r+ 1). Thus, we have

γ ≥
(

Pr
u∼U

[
u >

r

r + 1

])r+1

≥
(
θ

(
1

r + 1

)q)r+1

= 1− ρ4,

where the second inequality follows from our assumption on U .
Let ζ := b zi′r+1c ≥ 1. We next partition the items assigned to i′ into ζ parts each

of size at least r+ 1; i.e., let φ−1(i′) = S1 ∪ · · · ∪ Sζ , where the sets St are all disjoint
and contain at least r + 1 items each. Observe that the probabilities that the sum in
each part exceeds r are independent, which means that

Pr

 ∑
j∈φ−1(i′)

ui(j) ≤ zi

 ≤ Pr

 ∑
j∈φ−1(i′)

ui(j) ≤ r


≤ Pr

∀t ∈ [ζ] ,
∑
j∈St

ui(j) ≤ r


=

ζ∏
t=1

Pr

∑
j∈St

ui(j) ≤ r

 .
Now note that for any t = 1, 2, . . . , ζ, the probability that

∑
j∈St ui(j) ≤ r is at most

the probability that the sum of r + 1 i.i.d. random variables sampled according to U

D
ow

nl
oa

de
d 

08
/0

5/
22

 to
 1

03
.2

7.
9.

24
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WHEN DO ENVY-FREE ALLOCATIONS EXIST? 1519

is at most r. Hence, by definition of γ, ρ and the bound established above, we have

Pr

 ∑
j∈φ−1(i′)

ui(j) ≤ zi

 ≤ (1− γ)
ζ ≤ (1− γ)

z
i′
4r ≤ ρzi′/r,

as desired.

Combining Lemma 4.2 with (4.2) and (4.3) yields

Pr[φ is envy-free] ≤
∏
i∈N
zi≤r

∏
i′∈N
z
i′>r

ρzi′/r =
∏
i∈N
zi≤r

ρ

(∑
i′∈N s.t. z

i′>r
zi′
)
/r
.

Let ` := m − rn be the remainder upon dividing m by n. The sum in the exponent
can be rearranged as ∑

i′∈N
z
i′>r

zi′ = m−
∑
i′∈N
z
i′≤r

zi′ ≥ m− rn = `.

Thus, we have

Pr[φ is envy-free] ≤
∏
i∈N
zi≤r

ρ`/r = ρ(`/r)·|{i∈N |zi≤r}|.

Now observe that |{i ∈ N | zi ≤ r}| is at least n− m
r+1 = n−`

r+1 , which implies that

(4.4) Pr[φ is envy-free] ≤ ρ
`(n−`)
r(r+1) ≤ ρ

n·min{`,n−`}
2r(r+1) ≤ ρ

n1+ε

2r(r+1) .

Finally, we can bound ρ as follows:

ρ =
4

√
1−

(
θ

(
1

r + 1

)q)r+1

≤ 4

√
1−

(
θ

r + 1

)q(r+1)

≤ 4

√
1−

(
θ

2r

)2qr

≤ 4

√
1−

(
θ

2c log n/ log log n

)4qc logn/ log logn

=
4

√
1−

(
q log log n

0.2ε log n

)0.4εθ logn/ log logn

≤ 4

√
1− (1/ log n)

0.4εθ logn/ log logn

≤ 4

√
1− (1/ log n)

0.5ε logn/ log logn

=
4
√

1− n−0.5ε

≤ e−n
−0.5ε/4,(4.5)
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where the first inequality follows from θ ≤ 1 and the last inequality follows from the
estimate 1− x ≤ e−x, which holds for any real number x.

Combining (4.4) and (4.5), we get

Pr[φ is envy-free] ≤ e−
n1+0.5ε

8r(r+1) = n−
n1+0.5ε

8r(r+1) logn ,

which is at most n−2m for sufficiently large n. This yields (4.1) and concludes our
proof.

5. Conclusion and future work. In this paper, we study the existence and
nonexistence of envy-free allocations and essentially close the gap left open by Dick-
erson et al. [8] with regard to the transition between the two phases. On the positive
side, we show that if the number of items is a multiple of the number of agents, an
envy-free allocation is likely to exist as long as the former quantity is at least twice
the latter. On the negative side, we show that if the number of items is not “close to”
being a multiple of the number of agents, an envy-free allocation is unlikely to exist
even when the former quantity exceeds the latter by almost a logarithmic factor. Both
of our results make use of several new ideas that may be useful for other problems in
fair division.

Our work leaves several promising directions for future research. First, while
we assume that the utility of every agent for every item is drawn from the same
distribution, this may not be the case when items of highly differing values are being
divided. It would be interesting to see whether our results can be generalized to the
setting where each item comes with its own distribution. In addition, one could study
other fairness notions besides envy-freeness from the asymptotic point of view. Of
particular interest is the notion envy-freeness up to any item (EFX; see the definition
in section 1.1), whose guaranteed existence is an enigmatic open question [6].

As we mentioned earlier, all of the works on the asymptotic existence of fair
allocations thus far have assumed that agents are endowed with additive utilities.
While additivity provides a reasonable trade-off between simplicity and expressiveness,
it would be interesting to establish analogous results that hold for more general classes
of utilities. Going beyond additivity introduces several complications; for example,
the welfare-maximizing allocation is no longer simply the one that assigns every item
to the agent who values it most, and giving an agent several goods that she values
highly does not guarantee that the agent will also have a correspondingly high value
for the whole bundle. Nevertheless, a starting point may be to prove results for specific
distributions over utilities from a well-structured class, such as that of submodular
valuations.

Another possible avenue for future work is to consider the setting where in-
stead of allocating items to individual agents, we divide them among groups of
agents [19, 20, 24]. The agents in each group share the same set of items but may have
different preferences. This is the case, for example, when dividing household goods
among families or resources between departments in a university. Manurangsi and
Suksompong [15] generalized the results of Dickerson et al. [8] to the group setting
and left a logarithmic gap between existence and nonexistence. We are hopeful that
the techniques we introduce in the present work will help toward closing this gap as
well.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable comments.
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